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APPENDIX I

To determine the solvability condition for a problem of

the form

I’j(l) = q (62)

we multiply (61) byafunction pu(p), to be specified later,

integrate the result by parts from p = O to P = 1, and

(63)

We choose U(P) to be a solution of the so-called adjoint

homogeneous problem

u(l) = o. (65)

We take the solution of (64) and (65) that is bounded at

p = O as u (P) = J% (y~jp). Substituting for u into (63) and

using the boundary condition (62 ), we arrive at the follow-

ing solvability y condition:

/

1

c,7mjJm’ (Ym~) + PJm(%jP)~j(P) (ZP = 0. (66)
o

[1]

[2]

[3]

[4]

[5]

[6]

. (7m~ – 2k.2 + 3kjk.) [Jm’(~mj)Jm’(6j)/ Jm(6j) ]1

Don = b’?nn{Jm’ (Ymn) ([~s(%?? + knkw) (2ks + k.)

+ (~mn’ – knk~) 2[Jm’ (an) /’anJm(an) ])

— 2Ynm3Jm” (Trm) }

L%. = &ym {Jm’ (~m,) ( [k.(wnsz – kk) (2L – k)

+ (~ms’ + hh)2[Jm’ (L) /B,Jm(BJ ])

– 27ms3Jm” (~m,) } .
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Asymmetric Coupled Transmission Lines

in an Inhomogeneous Medium
VIJAI K. TRIPATHI, MEMBER, IEEE

Ab.stracf-Terminal characteristic parameters for a uniform
coupled-line four-port for the general case of an asymmetric, in-
homogeneous system are derived in this paper. The parameters
(impedance, admittance, etc.) are derived in terms of two inde-

pendent modes that propagate in two uniformly coupled propagating
systems. The four-port parameters derived are of the same form
as those obtained for the symmetric case resulting in similar two-
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port equivalent circuits for various circuit configurations considered
by Zysman and Johnson 11]. The results obtained should be quite

useful in designing asymmetric coupled-line circuits in an inhomo-
geneous medium for various known applications.

INTRODUCTION

u NTIFORM coupled-line circuits are used for many

applications including filters, couplers, and im-

pedance matching networks. These circuits are usually
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designed by utilizing the impedance, admittance, chain,

and other parameters characterizing the coupled-line

four-port network. These parameters may be obtained in

terms of the coupled-line impedances or admittances, and

phase velocities for even and odd modes of excitation for
the case of coupled TEM lines (homogeneous medium)

~2], [3] or coupled identical lines in an inhomogeneous

medium [1]. Recalling that even and odd modes of ex-

citation correspond to the cases where the voltages and

the currents on the two lines are equal in rniignitude and

are in p@se for the even mode and out of phase for the

odd mode, it is seen that such modes cannot propagate

independently for the case of asymmetric coupled lines

[5]. For asymmetric coupled-line cases these modes can

be defined only for special cases [5]–[7] where the line

parameters obey certain restrictive relationships, ‘ ~

In this paper the parameters of a general asymmetric

asynchronous coupled:line four-port are obtained in terms

of the line properties for two independent modes of excita-

tions. These modes correspond to a line,ar combination

of voltages and currents on the two lines which are re-

l@ed in magnitude and phase through terms involving

line constants. The four-port circuit parameters are ob-

tained b~ writing the solutions for voltages and currents

on the two lines in terms of the two independent modes

and deriving the relationships between port voltages and

currents in a suitable form leading to impedance, admit-

tance; chain, ok any other parameters.

COUPLED-LINE ANALYSIS

The behavior of two coupled lines is described in general

by the following set of equations:

dvl
.—=

dx
zlil + .Giiz

dvz

“z
= z2& + Zmil

dil

“z
= ylvl i- ymv2

diz

–G = y2v2 + ymvl

(la)

(lb)

(2a)

(2b)

where .ej( j = 1,2) and y$( j = 1,2) are self-impedance

and admittance per unit length of line j in the presence

of line k (k = 1,2; k # j), z~ and y~ are mutual impedance

and admittance per unit length, respectively, and an eiw~

time variation has been assumed.

Differentiating (la) and (lb.) with respect to z and

substituting (2a) and (2b), a system of equations for

voltages on the uniformly coupled lines is obtained as

dzvl

dx’ –
alvl — blvz = O

‘?2– @v2 – b2v1 = O
dxz
,

(3a)

(3b)

where

al = YIZ1 + y~~

@ = y%z + y?n%z

h = .Wm + Y2Gn

b = Z2ym + Ylzm. (4)

Since none of the coefficients in (3) varies with x, an

z variation of the form v(x) = voe~’ is assumed for the

voltages. The solution of the resulting eigenwdue problem

leads to the following four roots of -y:

71,2 = 4=7’,

and

73,4 = *7.

where ,-

For the case of lossless coupled systems these roots are the

same as those obtained by Amemiya [8], Krage and

Haddad [9], Marx [10], and others.

These values. of y. and Y. correspond to in phase and

antiphase waves for a class of lossless lines. The relation-

ship between the voltages on the two. lines for each of

these waves may be determined from (3) and (5) and is

given as

2)2__72—al b,
—

‘bl ‘y2–a2
(6)

V1

aJ2 + 4blbz]112) (7)

= & { (cQ – al) – [(az – a,)2 + 4blb:]l/2

As seen from the expressions for R, and Rr, vz/~.

(8)

is posi-

tive real for one mode, and negative real fw the other

mode for a large class of lossless coupled-line systems where

blb2 >0. For the case of identical lines, R, = +1 and

Rr = – 1 and the two modes correspond to the even and

odd modes, respectively [4], and for homogen~ous systems

R. and R. correspond to lateral and diagonal excitations,

respectively [11 ].

The general solutions for the voltages on, the two lines

in terms of all th~ four waves then are given by

VI = Ale-r’= i- A9e~C%+ A3e:?=x + A4eYrz (9)
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VZ = AIRce–wx + AzRCe~@+ AsRre–~’z + A&xeY”x. ( 10)

The corresponding currents for all four waves are de-

termined by substituting the expressions for voltages

(9) and(lO) into (la) and(lb) leadingto

il = AIYCle–~@ — AzYole~cx + AsY~le–~~x — AIY.ler@

(11)

i2 = A lRCY,ze–~@ — AzR. Y.zeYC”+ A sR=Y~e–~@

– A.4RrYtie~”Z (12)

where Y.1, Ycz, Y~l, and Y~z are t~e characteristic admit-

tances of lines 1 and 2 for the two modes and are given by

22 — Zac 1
YC1=7C ‘—

2122— Zmz Zcl

22 — Za. 1
Yrl = ‘y. .—

2122- Zmz Z.1

(13)

(14)

(15)

(16)

From these equations and (7) and (8) for R. and R;, re-

spectively, it is seen thak ‘

Fig. 1. Schematic of a uniform coupled-line four-port. I
t,

from (9) –( 12). For example, the impedance matrix fir

the four-port is found by solving for port voltages in

terms of port currents. The port voltages are given as

vl-

V2

vi

v4-

——

The port currents are given as

‘A ~.

Az

A3

.A4.

. (18,1
,,

(19)

(17)

and that the ratio of curr nt amplitudes on the two lines

are iz/il = f– l/Rr and – [Ro for the two modes y = *YC

and -y = d~=, respectively.

Two independent modes can be excited on any two uni-

formly coupled systems. These modes correspond to +

linear combination of voltages and currents which are
ielated in magnitude” and p@se. The voltages and cur-

rents are related through vz/vl = @ and R= with iz/il =

– l/R~ and – l/R., respectively. This can be further il-

lustrated from (1) and (2) by finearly iombifing the
equations ‘as v. ,T = v; — R. ,*v1 and i., = k + (1/R.,.)il
resulting in uncoupled transmission-line equations for the

two modes:

COUPLED-LINE ‘FOUR-PORT

eliminating the amplitude coefficients Al, A.z, As, and AA

leads to four equations for VI, Vz, Vs, and V1 in terms of

11, 12, Is, and 14 of the form

[v] = [z]. [1]. (20)

The elements of the 4 X 4 Z-matrix are given by

2.1 coth 7,1 Z=l coth 7=1

’11 = ’44 ‘= (1 – R,/R.) + (1 – Rm/Rc)
(21a)

Z.lRO coth ycl Z=lRT coth yri

’12 = ’21 = ’34 = ’43 = (’1 – Rc/R.) + (1 – R./R.)

Z.z coth ~Cl Zrz coth 7.1
.—

R.(1 – R./R=) – R,(I – Rx/R.)
(21b)

RcZc,
.213 = 231 = 22’ = .Z’2 =

(1 – R./Rx) sinh YJ

The impedance, adrhittance, or chain matrix for the ,
,.,
.,

R=z=l
coupled-line four-port as shown in Fig. 1 can now be ob-

,1~f
(21C)

tained by solving for DON current-voltage relationships
+ (1 – R=/R.) sinh 7=1
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(21d)

RcZ., coth Tj RmZ.2 coth 7.1
z%?= Z33 = –

Rz(l – Rc/Rm) – R.(1 – Rr/Re)

(21f)

The admittance parameters are found in a similar fashion

and are given as

Y.1 coth ~J Y*1 coth yml

‘“ = ’44 = (1 – RC/R.) + (1 – Rr/Rc)
(22a)

Y.l coth -yTl
—

R.(I – Rr/Re)
(22b)

Y.,
Y13 = Y31 = Y2, = Y,2 =

(R. – R.) sinh 7J

Y.,

+ (RG – Rr) sinh 7=1
(22C)

Y.,
Y14 = Y41 = –

(1 – R./RT) sinh YJ

Y=,—
(1 – R=/R,) sinh Y=l

(22d)

Y.H = Y33 = –
RcYc, coth 7$

‘Tyr’ Coth ‘“1 (22e)
Rr(l – Rc/Rn) – Rc(l – Rr/Rc)

R. Y.,
+ (22f)

R. ( 1 – R~/Rt) sinh Y.1 ‘

TWO-PORT CIRCUITS

The parameters (matrix elements) characterizing a

general uniform coupled-line four-port obtained previously
are of the same form as those for the case of symmetric

four-port derived by Zysman and Johnson [1]. The re-

szdting equivalent circuits may be obtained in a similar

fashion as in [1]. For example, for an open-circuit inter-

digital section consisting of lossless lines as shown in

Fig. 2, Is = Id = O and

1+ I I
——

b’

‘-2a=e&’
R:ZCI ( l- Rm/Rc) cot Oc+R:Znl(l-Rc/Rm) cot OT

A=—
Rc Zcl ( l-Rn /Rc) cscec+Rw Znl ( l- Rc/Rn) CSCf~

zc) ( I- Rn/Rc) cOt ec + znl (l- RcIRm) COte=

D = RC,ZCI (l-I?w/RC) CSC ec + Ffn.Znl(l-RC/Rm) CSCeI—

c=—
J (I-W%) (l- Rn/Rc)

RCZCI (l- Rn/Rc) Csc et + RwZnl(I-Rc/Rn) Cscq;

S . AD-1

c

Fig. 2. Prototype open-circuited interdigital smtion.

K1=IHIW
Substituting for Zll, ZU, ZU, and ZW yields

[1
Zll Z13

z.,

[

cot 0. Rc CSC&

Z31 Z33

= ‘i 71 – Rc/Ru) Rc CSC &

1R> cot 0.

(23)

(24)

where 13~= 6.1 and 13~= 1%1.

This Z-matrix suggests an equivalent circuk as shown

in Fig. 2 with its ABCD parameters. The AB(TD param-

eters and the equivalent circuits for other con figurations

may be found in a similar manner. For the case of identical

lines R. = –Rr = 1 and the equivalent circuits and two-

port parameters are the same as those obtained by Zysman

and Johnson [1].

SPECIAL CASES

The results obtained above are indeed a generalized

case of known results for various coupled-line systems

where even- and odd-mode analysis has been aoplied. For

various cases studied involving coupled TEM m inhomo-

geneous lines, the equations are simplified leading to the

respective known results.

Case I—Symmettic Coupled Lines ~1], ~.2]

For this case gl = y~ = y; .eI — ZZ = z. Then R. = 1,

and Rr “= —1.
Expressing y’s and z’s in terms of line constants, i.e.,

self- and mutual inductances and capacitances, it is seen

that

ZC2 = Zol = ZOC the even-mode impedance

.
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and

Z~2 = ZTI = ZOO the odd-mode impedance

with

1’.,. = [(v * Ym) (2 + .%) 11’2= 7.,0[4] (25)

and the resulting expressions for the coupled-line four-

port parameters are the same as those in Zysman and

Johnson [1] for an inhomogeneous medium and Jones

and Bolljahn [2] for a homogeneous medium (for TEM

case y~/y = – z~/z).

Case ,%?-Asymmetric Coupled Lines in a Homogeneous

Medium [8], [6]

For lines with TEM waves

yl.zl = yzzz

and

Z’m
—. _—

(Y:) 112 (2,22)’12“
(26)

Then

~C=-r. =jt3 (27)

Rc = –Rr = (ZZ/Zl) 112 (28)

where 21 = (zl/yJ 112and Z’ = (.z’/y’) 112.

The resulting expressions for the coupled-line four-port

are the same as those in [3] and [6]. For example, the

impedance parameters are [from (21a) –(21f ) ]

Zll = Z~ = –j/2 (Z1/Z2) 112(ZC + Zm) cot 0 (29a)

Z,, = Z,l = Z,, = Z,, = –j/2(Z. – Z.) cot 0 (29b)

ZR = Z,, = Z’, == Z~ = –j/2 (Z. – Z.) csc 0 (29c)

Z14 = Z41 = –j/2 (zI/z’) 112(z. + z.) Csc e (29d)

ZZ2 = Z,t = –j/2 (Zz/Zl) ’12(ZC + Z.) cot 0 (29e)

Z,, = Z,t = –j/2 (Zj/ZJ 1/2(Z= + Z=) csc 0 (29f)

where

z.,. = (ZIZ2) 1/2
[

1 * ?-/J (yly2) 1/2 “211%%2/(!.hyz) 1/2 “

(30)

Examination of Z. and Z= in terms of line constants re-

veals that the even- and odd-mode impedances of the

two lines as defined by ZO.”,ZO~” for line 1 and ZO$ and
ZO# for line 2, respectively, [6] are given by

Zo.” + zoo” = (zI/z’) ‘/’ (Zc

Zoe” — ZOO”= Zoeb — ZoOb=

and

20$ + Zoob = (z2/zl) 1/2(Zc

Caae &—A Congruent Case [6]

If the line constants are such that

+ z.) (31a)

z. – z. (31b)

+ z=). \(31c)

yl + y?n 2’ — Zm
—= —-----AR3 (32)
y2 + y. 21 — Zm

which is approximately the case for tightly coupled lines,

the even and odd modes can be redefined as in [5]. Sub-

stitution of (32) into expressions for R. and R=, (7) and

(8) , leads to

R. = +1

and

R.= -%=-R,. (33)

The corresponding ratio of curr’ents on the two lines is

then given as

L?
– –1 for -f= +77.—

T (34)
’21

Equations (33) and (34) correspond to the even- and

odd-mode definitions for the coupled-line case where the

condition given by (32) is satisfied [5]. Then the resulting

matrix parameters are the same as those obtained by

Speciale. These mode definitions have, of course, been

experimentally verified for structures consisting of tightly

coupled inhomogeneous lines,

CONCLUSIONS

It is shown that asymmetric, uniform coupled lines in

an inhomogeneous medium, e.g., suspended substrate,

microstrip lines, and others, may be analyzed in terms of

the line properties for two independent modes of excita-

tion. The mode characteristics, i.e., the propagation con-

stants and the characteristic impedances, are derived in

terms of the series impedances, the shunt admittances,

and the mutual impedance and admittance per unit length

of the lines. The 4 x 4 network matrices are then ob-

tained in terms of these mode parameters. These circuit

parameters characterizing the coupled-line four-port may

be used to design various structures for all known ap-

plications including filters, couplers, and matching net-

works.
It should be noted that such structures can be treated

utilizing the coupled-mode formulation [9]. However,

the four-port circuit matrix is much easier and more con-

venient to use in formulating design procedures for various

circuits particularly for the cases where multiple coupled-

Iine sections are used. This paper has been primarily con-

cerned with the study of inhomogeneous, asymmetric

coupled lines. However, the formulation basically in-

volves the evaluation of the properties of two linear uni-

formly coupled systems and coupled-line four-ports in
terms of normal independent modes of’ the system and
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should provide a useful alternate tool for the study of many

active and passive systems which have been studied using

the coupled-mode theory.
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Long-Wavelength Electromagnetic Power Absorption

in Prolate spheroidal Models of Man and Animals

CURTIS c. JOHNSON, SENIOR MEMBER, IEEE, CARL H. DURNEY, MEMBER, IEEE,

AND HABIB NIASSOUDI, STUDENT MEMBER, IEEE

Absfracf—A previously developed electromagnetic (EM) field
perturbation analysis is used to calculate the electric fields in tissue

prolate spheroids irradiated by plane waves with long wavelength

compared to the spheroid dimensions. This theory is applied to
prolate spheroid models of man and animals to obtain internal elec-

tric field strength, absorbed power distribution, and total absorbed

power. These data are of value in estimating tissue EM power absorp-
tion in experimental animals and man. The theory maybe used to
help extrapolate animal biological effects data to man, and as a

guide to establishing an EM radiation safety standard.

INTRODUCTION

AN important aspect of electromagnetic- (EM) wave

biological-effects research involves the investigation

of internal electric field strength and power absorption in

biological tissue subjected to EM irradiation. EM power

is absorbed by the tissues as a function of frequency, body

shape, tissue properties, and irradiation conditions.

Absorbed power increases as the square of frequency at
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long wavelengths, enters a transition region of maximum

absorbed power when the wavelength approximates body

dimensions, and then decreases with frequency due to

skin-effect surface heating. This general behavior has been

characterized by ,Johnson and Guy [1] for a tissue sphere

model, and has been measured experimentally by Gandhi

[2] in irradiation experiments with rats.

Early work on the tissue sphere model has been done by

Anne et al. [3], Shapiro et al. [4], Kritikos and Schwan

[5], and Johnson and Guy [1]. Recent analyses of multi-

layer effects in spherical models have been reported by

Joines and Spiegel [6], and Weil [7]. The principal result

of the multilayer model compared to the k omogeneous

model is a shift in resonant frequency and an increase of

peak absorption. These theoretical approaches are appli-

cable to all frequency ranges and require extensive com-

puter computations. Simpler low-frequency Mie solutions

have been obtained by Lin et al. [8].

A field perturbation approach has recently been de-

veloped and applied to prolate spheroid models for low ka

values well below the maximum absorption frequency

range [9]. A principal conclusion from the pro] ate spheroid

results is that orientation of the body with respect to the

incident plane-wave vectors is an extremely important

variable which can make an order-of-magnitude difference

in EM power absorption.

Considerable effort has also been expendec, to measure


